Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.447
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cells ; 13(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38727303

RESUMEN

Small interfering RNA (siRNA) holds significant therapeutic potential by silencing target genes through RNA interference. Current clinical applications of siRNA have been primarily limited to liver diseases, while achievements in delivery methods are expanding their applications to various organs, including the lungs. Cholesterol-conjugated siRNA emerges as a promising delivery approach due to its low toxicity and high efficiency. This study focuses on developing a cholesterol-conjugated anti-Il6 siRNA and the evaluation of its potency for the potential treatment of inflammatory diseases using the example of acute lung injury (ALI). The biological activities of different Il6-targeted siRNAs containing chemical modifications were evaluated in J774 cells in vitro. The lead cholesterol-conjugated anti-Il6 siRNA after intranasal instillation demonstrated dose-dependent therapeutic effects in a mouse model of ALI induced by lipopolysaccharide (LPS). The treatment significantly reduced Il6 mRNA levels, inflammatory cell infiltration, and the severity of lung inflammation. IL6 silencing by cholesterol-conjugated siRNA proves to be a promising strategy for treating inflammatory diseases, with potential applications beyond the lungs.


Asunto(s)
Lesión Pulmonar Aguda , Colesterol , Interleucina-6 , ARN Interferente Pequeño , Animales , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/genética , Lesión Pulmonar Aguda/terapia , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Colesterol/metabolismo , Ratones , Lipopolisacáridos , Masculino , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Línea Celular , Pulmón/patología , Pulmón/metabolismo
2.
Medicine (Baltimore) ; 103(19): e38091, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728467

RESUMEN

To screen immune-related prognostic biomarkers in low-grade glioma (LGG), and reveal the potential regulatory mechanism. The differential expressed genes (DEGs) between alive and dead patients were initially identified, then the key common genes between DEGs and immune-related genes were obtained. Regarding the key DEGs associated with the overall survival (OS), their clinical value was assessed by Kaplan-Meier, RCS, logistic regression, ROC, and decision curve analysis methods. We also assessed the role of immune infiltration on the association between key DEGs and OS. All the analyses were based on the TGCA-LGG data. Finally, we conducted the molecular docking analysis to explore the targeting binding of key DEGs with the therapeutic agents in LGG. Among 146 DEGs, only interleukin-6 (IL-6) was finally screened as an immune-related biomarker. High expression of IL-6 significantly correlated with poor OS time (all P < .05), showing a linear relationship. The combination of IL-6 with IDH1 mutation had the most favorable prediction performance on survival status and they achieved a good clinical net benefit. Next, we found a significant relationship between IL-6 and immune microenvironment score, and the immune microenvironment played a mediating effect on the association of IL-6 with survival (all P < .05). Detailly, IL-6 was positively related to M1 macrophage infiltration abundance and its biomarkers (all P < .05). Finally, we obtained 4 therapeutic agents in LGG targeting IL-6, and their targeting binding relationships were all verified. IL6, as an immune-related biomarker, was associated with the prognosis in LGG, and it can be a therapeutic target in LGG.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Encefálicas , Glioma , Interleucina-6 , Microambiente Tumoral , Humanos , Interleucina-6/metabolismo , Interleucina-6/genética , Glioma/inmunología , Glioma/genética , Glioma/mortalidad , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Pronóstico , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Biomarcadores de Tumor/genética , Femenino , Estimación de Kaplan-Meier , Regulación Neoplásica de la Expresión Génica
3.
Eur J Med Res ; 29(1): 285, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745325

RESUMEN

INTRODUCTION: Hydrogen (H2) is regarded as a novel therapeutic agent against several diseases owing to its inherent biosafety. Bronchopulmonary dysplasia (BPD) has been widely considered among adverse pregnancy outcomes, without effective treatment. Placenta plays a role in defense, synthesis, and immunity, which provides a new perspective for the treatment of BPD. This study aimed to investigate if H2 reduced the placental inflammation to protect the neonatal rat against BPD damage and potential mechanisms. METHODS: We induced neonatal BPD model by injecting lipopolysaccharide (LPS, 1 µg) into the amniotic fluid at embryonic day 16.5 as LPS group. LPS + H2 group inhaled 42% H2 gas (4 h/day) until the samples were collected. We primarily analyzed the neonatal outcomes and then compared inflammatory levels from the control group (CON), LPS group and LPS + H2 group. HE staining was performed to evaluate inflammatory levels. RNA sequencing revealed dominant differentially expressed genes. Bioinformatics analysis (GO and KEGG) of RNA-seq was applied to mine the signaling pathways involved in protective effect of H2 on the development of LPS-induced BPD. We further used qRT-PCR, Western blot and ELISA methods to verify differential expression of mRNA and proteins. Moreover, we verified the correlation between the upstream signaling pathways and the downstream targets in LPS-induced BPD model. RESULTS: Upon administration of H2, the inflammatory infiltration degree of the LPS-induced placenta was reduced, and infiltration significantly narrowed. Hydrogen normalized LPS-induced perturbed lung development and reduced the death ratio of the fetus and neonate. RNA-seq results revealed the importance of inflammatory response biological processes and Toll-like receptor signaling pathway in protective effect of hydrogen on BPD. The over-activated upstream signals [Toll-like receptor 4 (TLR4), nuclear factor kappa-B p65 (NF-κB p65), Caspase1 (Casp1) and NLR family pyrin domain containing 3 (NLRP3) inflammasome] in LPS placenta were attenuated by H2 inhalation. The downstream targets, inflammatory cytokines/chemokines [interleukin (IL)-6, IL-18, IL-1ß, C-C motif chemokine ligand 2 (CCL2) and C-X-C motif chemokine ligand 1 (CXCL1)], were decreased both in mRNA and protein levels by H2 inhalation in LPS-induced placentas to rescue them from BPD. Correlation analysis displayed a positive association of TLR4-mediated signaling pathway both proinflammatory cytokines and chemokines in placenta. CONCLUSION: H2 inhalation ameliorates LPS-induced BPD by inhibiting excessive inflammatory cytokines and chemokines via the TLR4-NFκB-IL6/NLRP3 signaling pathway in placenta and may be a potential therapeutic strategy for BPD.


Asunto(s)
Displasia Broncopulmonar , Hidrógeno , Inflamación , Lipopolisacáridos , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Placenta , Transducción de Señal , Receptor Toll-Like 4 , Femenino , Embarazo , Lipopolisacáridos/toxicidad , Hidrógeno/farmacología , Hidrógeno/uso terapéutico , Animales , Placenta/metabolismo , Placenta/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Transducción de Señal/efectos de los fármacos , Ratas , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , FN-kappa B/metabolismo , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Administración por Inhalación , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/inducido químicamente , Displasia Broncopulmonar/tratamiento farmacológico , Displasia Broncopulmonar/prevención & control , Interleucina-6/metabolismo , Interleucina-6/genética , Ratas Sprague-Dawley , Modelos Animales de Enfermedad
4.
PLoS One ; 19(5): e0302470, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38701101

RESUMEN

Network oscillation in the anterior cingulate cortex (ACC) plays a key role in attention, novelty detection and anxiety; however, its involvement in cognitive impairment caused by acute systemic inflammation is unclear. To investigate the acute effects of systemic inflammation on ACC network oscillation and cognitive function, we analyzed cytokine level and cognitive performance as well as network oscillation in the mouse ACC Cg1 region, within 4 hours after lipopolysaccharide (LPS, 30 µg/kg) administration. While the interleukin-6 concentration in the serum was evidently higher in LPS-treated mice, the increases in the cerebral cortex interleukin-6 did not reach statistical significance. The power of kainic acid (KA)-induced network oscillation in the ACC Cg1 region slice preparation increased in LPS-treated mice. Notably, histamine, which was added in vitro, increased the oscillation power in the brain slices from LPS-untreated mice; for the LPS-treated mice, however, the effect of histamine was suppressive. In the open field test, frequency of entries into the center area showed a negative correlation with the power of network oscillation (0.3 µM of KA, theta band (3-8 Hz); 3.0 µM of KA, high-gamma band (50-80 Hz)). These results suggest that LPS-induced systemic inflammation results in increased network oscillation and a drastic change in histamine sensitivity in the ACC, accompanied by the robust production of systemic pro-inflammatory cytokines in the periphery, and that these alterations in the network oscillation and animal behavior as an acute phase reaction relate with each other. We suggest that our experimental setting has a distinct advantage in obtaining mechanistic insights into inflammatory cognitive impairment through comprehensive analyses of hormonal molecules and neuronal functions.


Asunto(s)
Cognición , Giro del Cíngulo , Histamina , Inflamación , Lipopolisacáridos , Animales , Giro del Cíngulo/metabolismo , Giro del Cíngulo/fisiopatología , Inflamación/metabolismo , Ratones , Masculino , Histamina/sangre , Histamina/metabolismo , Ácido Kaínico , Interleucina-6/sangre , Interleucina-6/metabolismo , Conducta Animal , Red Nerviosa/fisiopatología , Ratones Endogámicos C57BL
5.
BMC Immunol ; 25(1): 31, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734625

RESUMEN

BACKGROUND: Thyroid eye disease (TED) is an inflammatory process involving lymphocyte-mediated immune response and orbital tissue damage. The anti-insulin-like growth factor-1 receptor (IGF-1R) antibodies produced by B lymphocytes are involved in the activation of orbital fibroblasts and the inflammatory process of orbital tissue damage in TED. The purpose of this study was to explore the role of IGF-1R in the mechanistic connection between orbital fibroblasts and B lymphocytes in TED. METHODS: Orbital fibroblasts sampled from orbital connective tissues and peripheral B lymphocytes isolated from peripheral blood, which were obtained from 15 patients with TED and 15 control patients, were co-cultured at a ratio of 1:20. The level of IGF-1R expression in orbital fibroblasts was evaluated by flow cytometry and confocal microscopy. Transient B lymphocyte depletion was induced with anti-CD20 monoclonal antibody rituximab, while the IGF-1R pathway was blocked by the IGF-1R binding protein. The expression levels of interleukin-6 (IL-6) and regulated upon activation, normal T cell expressed and secreted (RANTES) in the co-culture model were quantified via ELISA. RESULTS: IGF-1R expression was significantly elevated in TED orbital fibroblasts compared to that of controls. A 24-h co-culture of orbital fibroblasts with peripheral B lymphocytes induced elevated expression levels of IL-6 and RANTES in each group (TED patients and controls), with the highest levels occurring in TED patients (T + T group). Rituximab and IGF-1R binding protein significantly inhibited increased levels of IL-6 and RANTES in the co-culture model of TED patients. CONCLUSIONS: IGF-1R may mediate interaction between orbital fibroblasts and peripheral B lymphocytes; thus, blocking IGF-1R may reduce the local inflammatory response in TED. Rituximab-mediated B lymphocyte depletion played a role in inhibiting inflammatory responses in this in vitro co-culture model, providing a theoretical basis for the clinical application of anti-CD20 monoclonal antibodies in TED.


Asunto(s)
Linfocitos B , Técnicas de Cocultivo , Fibroblastos , Oftalmopatía de Graves , Receptor IGF Tipo 1 , Humanos , Oftalmopatía de Graves/metabolismo , Oftalmopatía de Graves/inmunología , Fibroblastos/metabolismo , Receptor IGF Tipo 1/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Femenino , Masculino , Persona de Mediana Edad , Adulto , Rituximab/farmacología , Rituximab/uso terapéutico , Órbita/metabolismo , Órbita/inmunología , Depleción Linfocítica , Interleucina-6/metabolismo , Células Cultivadas , Quimiocina CCL5/metabolismo , Comunicación Celular , Anciano
6.
BMC Musculoskelet Disord ; 25(1): 375, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734632

RESUMEN

BACKGROUND: Synovitis, characterized by inflammation of the synovial membrane, is commonly induced by meniscus tears. However, significant differences in inflammatory responses and the key inflammatory mediators of synovium induced by different types of meniscal tears remain unclear. METHODS: Magnetic resonance imaging (MRI) was employed to identify the type of meniscus tear, and the quantification of synovial inflammation was assessed through H&E staining assay. Transcription and expression levels of IL-1ß and IL-6 were evaluated using bioinformatics, ELISA, RT-qPCR, and IHC of CD68 staining assays. The therapeutic potential of Docosapentaenoic Acid (DPA) was determined through network pharmacology, ELISA, and RT-qPCR assays. The safety of DPA was assessed using colony formation and EdU staining assays. RESULTS: The results indicate that both IL-1ß and IL-6 play pivotal roles in synovitis pathogenesis, with distinct expression levels across various subtypes. Among tested meniscus tears, oblique tear and bucket handle tear induced the most severe inflammation, followed by radial tear and longitudinal tear, while horizontal tear resulted in the least inflammation. Furthermore, in synovial inflammation induced by specific meniscus tears, the anterior medial tissues exhibited significantly higher local inflammation than the anterior lateral and suprapatellar regions, highlighting the clinical relevance and practical guidance of anterior medial tissues' inflammatory levels. Additionally, we identified the essential omega-3 fatty acid DPA as a potential therapeutic agent for synovitis, demonstrating efficacy in blocking the transcription and expression of IL-1ß and IL-6 with minimal side effects. CONCLUSION: These findings provide valuable insights into the nuanced nature of synovial inflammation induced by various meniscal tear classifications and contribute to the development of new adjunctive therapeutic agents in the management of synovitis.


Asunto(s)
Ácidos Grasos Insaturados , Interleucina-1beta , Imagen por Resonancia Magnética , Membrana Sinovial , Sinovitis , Lesiones de Menisco Tibial , Lesiones de Menisco Tibial/tratamiento farmacológico , Lesiones de Menisco Tibial/metabolismo , Sinovitis/tratamiento farmacológico , Sinovitis/metabolismo , Sinovitis/patología , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/patología , Humanos , Ácidos Grasos Insaturados/farmacología , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos Insaturados/uso terapéutico , Masculino , Interleucina-1beta/metabolismo , Animales , Interleucina-6/metabolismo , Femenino , Meniscos Tibiales/efectos de los fármacos , Meniscos Tibiales/metabolismo , Ratones , Modelos Animales de Enfermedad
7.
Oncoimmunology ; 13(1): 2352179, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38746869

RESUMEN

Cancer-associated fibroblasts (CAFs) exhibit remarkable phenotypic heterogeneity, with specific subsets implicated in immunosuppression in various malignancies. However, whether and how they attenuate anti-tumor immunity in gastric cancer (GC) remains elusive. CPT1C, a unique isoform of carnitine palmitoyltransferase pivotal in regulating fatty acid oxidation, is briefly indicated as a protumoral metabolic mediator in the tumor microenvironment (TME) of GC. In the present study, we initially identified specific subsets of fibroblasts exclusively overexpressing CPT1C, hereby termed them as CPT1C+CAFs. Subsequent findings indicated that CPT1C+CAFs fostered a stroma-enriched and immunosuppressive TME as they correlated with extracellular matrix-related molecular features and enrichment of both immunosuppressive subsets, especially M2-like macrophages, and multiple immune-related pathways. Next, we identified that CPT1C+CAFs promoted the M2-like phenotype of macrophage in vitro. Bioinformatic analyses unveiled the robust IL-6 signaling between CPT1C+CAFs and M2-like phenotype of macrophage and identified CPT1C+CAFs as the primary source of IL-6. Meanwhile, suppressing CPT1C expression in CAFs significantly decreased IL-6 secretion in vitro. Lastly, we demonstrated the association of CPT1C+CAFs with therapeutic resistance. Notably, GC patients with high CPT1C+CAFs infiltration responded poorly to immunotherapy in clinical cohort. Collectively, our data not only present the novel identification of CPT1C+CAFs as immunosuppressive subsets in TME of GC, but also reveal the underlying mechanism that CPT1C+CAFs impair tumor immunity by secreting IL-6 to induce the immunosuppressive M2-like phenotype of macrophage in GC.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carnitina O-Palmitoiltransferasa , Interleucina-6 , Macrófagos , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/inmunología , Fibroblastos Asociados al Cáncer/patología , Interleucina-6/metabolismo , Interleucina-6/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Fenotipo , Animales , Ratones , Masculino , Femenino , Línea Celular Tumoral , Tolerancia Inmunológica
8.
Med Oncol ; 41(6): 155, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744773

RESUMEN

Interleukin-6 (IL-6) and hypoxia-inducible factor-1α (HIF-1α) play important roles in epithelial-mesenchymal transformation (EMT) and tumor development. Previous studies have demonstrated that IL-6 promotes EMT, invasion, and metastasis in epithelial ovarian cancer (EOC) cells by activating the STAT3/HIF-1α pathway. MicroRNA (miRNA) is non-coding small RNAs that also play an important role in tumor development. Notably, Let-7 and miR-200 families are prominently altered in EOC. However, whether IL-6 regulates the expression of Let-7 and miR-200 families through the STAT3/HIF-1α signaling to induce EMT in EOC remains poorly understood. In this study, we conducted in vitro and in vivo investigations using two EOC cell lines, SKOV3, and OVCAR3 cells. Our findings demonstrate that IL-6 down-regulates the mRNA levels of Let-7c and miR-200c while up-regulating their target genes HMGA2 and ZEB1 through the STAT3/HIF-1α signaling in EOC cells and in vivo. Additionally, to explore the regulatory role of HIF-1α on miRNAs, both exogenous HIF blockers YC-1 and endogenous high expression or inhibition of HIF-1α can be utilized. Both approaches can confirm that the downstream molecule HIF-1α inhibits the expression and function of Let-7c and miR-200c. Further mechanistic research revealed that the overexpression of Let-7c or miR-200c can reverse the malignant evolution of EOC cells induced by IL-6, including EMT, invasion, and metastasis. Consequently, our results suggest that IL-6 regulates the expression of Let-7c and miR-200c through the STAT3/HIF-1α pathway, thereby promoting EMT, invasion, and metastasis in EOC cells.


Asunto(s)
Carcinoma Epitelial de Ovario , Transición Epitelial-Mesenquimal , Subunidad alfa del Factor 1 Inducible por Hipoxia , Interleucina-6 , MicroARNs , Invasividad Neoplásica , Neoplasias Ováricas , Factor de Transcripción STAT3 , Transducción de Señal , MicroARNs/genética , Humanos , Transición Epitelial-Mesenquimal/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Femenino , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Carcinoma Epitelial de Ovario/patología , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/metabolismo , Línea Celular Tumoral , Animales , Invasividad Neoplásica/genética , Neoplasias Glandulares y Epiteliales/patología , Neoplasias Glandulares y Epiteliales/genética , Neoplasias Glandulares y Epiteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Ratones , Metástasis de la Neoplasia , Ratones Endogámicos BALB C
9.
Sci Rep ; 14(1): 11047, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744989

RESUMEN

Callicarpa kwangtungensis Chun (CK) is a common remedy exhibits anti-inflammatory properties and has been used in Chinese herbal formulations, such as KangGongYan tablets. It is the main component of KangGongYan tablets, which has been used to treat chronic cervicitis caused by damp heat, red and white bands, cervical erosion, and bleeding. However, the anti-inflammatory effects of CK water extract remains unknown. This study assessed the anti-inflammatory effects of CK in vivo and in vitro, characterized its main components in the serum of rats and verified the anti-inflammatory effects of serum containing CK. Nitric oxide (NO), tumour necrosis factor α (TNF-α) and interleukin-6 (IL-6) release by RAW264.7 cells was examined by ELISA and Griess reagents. Inflammation-related protein expression in LPS-stimulated RAW264.7 cells was measured by western blotting. Furthermore, rat model of foot swelling induced by λ-carrageenan and a collagen-induced arthritis (CIA) rat model were used to explore the anti-inflammatory effects of CK. The components of CK were characterized by LC-MS, and the effects of CK-containing serum on proinflammatory factors levels and the expression of inflammation-related proteins were examined by ELISA, Griess reagents and Western blotting. CK suppressed IL-6, TNF-α, and NO production, and iNOS protein expression in LPS-stimulated RAW264.7 cells. Mechanistic studies showed that CK inhibited the phosphorylation of ERK, P38 and JNK in the MAPK signaling pathway, promoted the expression of IκBα in the NF-κB signaling pathway, and subsequently inhibited the expression of iNOS, thereby exerting anti-inflammatory effects. Moreover, CK reduced the swelling rates with λ-carrageenan induced foot swelling, and reduced the arthritis score and incidence in the collagen-induced arthritis (CIA) rat model. A total of 68 compounds in CK water extract and 31 components in rat serum after intragastric administration of CK were characterized. Serum pharmacological analysis showed that CK-containing serum suppressed iNOS protein expression and NO, TNF-α, and IL-6 release. CK may be an anti-inflammatory agent with therapeutic potential for acute and chronic inflammatory diseases, especially inflammatory diseases associated with MAPK activation.


Asunto(s)
Antiinflamatorios , Artritis Experimental , Óxido Nítrico , Extractos Vegetales , Animales , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/química , Ratas , Células RAW 264.7 , Extractos Vegetales/farmacología , Extractos Vegetales/química , Óxido Nítrico/metabolismo , Artritis Experimental/tratamiento farmacológico , Agua/química , Carragenina , Modelos Animales de Enfermedad , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/sangre , Masculino , Interleucina-6/metabolismo , Interleucina-6/sangre , Edema/tratamiento farmacológico , Inflamación/tratamiento farmacológico
10.
Sci Rep ; 14(1): 11079, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745047

RESUMEN

N-acetyl glucosamine (NAG) is a natural amino sugar found in various human tissues with previously described anti-inflammatory effects. Various chemical modifications of NAG have been made to promote its biomedical applications. In this study, we synthesized two bi-deoxygenated NAG, BNAG1 and BNAG2 and investigated their anti-inflammatory properties, using an in vivo and in vitro inflammation mouse model induced by lipopolysaccharide (LPS). Among the parent molecule NAG, BNAG1 and BNAG2, BNAG1 showed the highest inhibition against serum levels of IL-6 and TNF α and the leukocyte migration to lungs and peritoneal cavity in LPS challenged mice, as well as IL-6 and TNF α production in LPS-stimulated primary peritoneal macrophages. BNAG2 displayed an anti-inflammatory effect which was comparable to NAG. These findings implied potential application of these novel NAG derivatives, especially BNAG1, in treatment of certain inflammation-related diseases.


Asunto(s)
Acetilglucosamina , Antiinflamatorios , Lipopolisacáridos , Macrófagos Peritoneales , Factor de Necrosis Tumoral alfa , Animales , Acetilglucosamina/farmacología , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/síntesis química , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-6/sangre , Inflamación/tratamiento farmacológico , Masculino , Modelos Animales de Enfermedad
11.
J Agric Food Chem ; 72(19): 10923-10935, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691832

RESUMEN

This study aimed to explore the ameliorative effects and potential mechanisms of Huangshan Umbilicaria esculenta polysaccharide (UEP) in dextran sulfate sodium-induced acute ulcerative colitis (UC) and UC secondary liver injury (SLI). Results showed that UEP could ameliorate both colon and liver pathologic injuries, upregulate mouse intestinal tight junction proteins (TJs) and MUC2 expression, and reduce LPS exposure, thereby attenuating the effects of the gut-liver axis. Importantly, UEP significantly downregulated the secretion levels of TNF-α, IL-1ß, and IL-6 through inhibition of the NF-κB pathway and activated the Nrf2 signaling pathway to increase the expression levels of SOD and GSH-Px. In vitro, UEP inhibited the LPS-induced phosphorylation of NF-κB P65 and promoted nuclear translocation of Nrf2 in RAW264.7 cells. These results revealed that UEP ameliorated UC and SLI through NF-κB and Nrf2-mediated inflammation and oxidative stress. The study first investigated the anticolitis effect of UEP, suggesting its potential for the treatment of colitis and colitis-associated liver disease.


Asunto(s)
Colitis , Sulfato de Dextran , Factor 2 Relacionado con NF-E2 , FN-kappa B , Polisacáridos , Animales , Ratones , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/administración & dosificación , Sulfato de Dextran/efectos adversos , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Humanos , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/metabolismo , Células RAW 264.7 , FN-kappa B/metabolismo , FN-kappa B/genética , Ratones Endogámicos C57BL , Sustancias Protectoras/farmacología , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/química , Hígado/efectos de los fármacos , Hígado/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/inmunología , Estrés Oxidativo/efectos de los fármacos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/inmunología , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-6/inmunología , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/inducido químicamente , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Mucina 2/genética , Mucina 2/metabolismo
12.
Nat Commun ; 15(1): 4034, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740814

RESUMEN

Mechanisms underlying human hepatocyte growth in development and regeneration are incompletely understood. In vitro, human fetal hepatocytes (FH) can be robustly grown as organoids, while adult primary human hepatocyte (PHH) organoids remain difficult to expand, suggesting different growth requirements between fetal and adult hepatocytes. Here, we characterize hepatocyte organoid outgrowth using temporal transcriptomic and phenotypic approaches. FHs initiate reciprocal transcriptional programs involving increased proliferation and repressed lipid metabolism upon initiation of organoid growth. We exploit these insights to design maturation conditions for FH organoids, resulting in acquisition of mature hepatocyte morphological traits and increased expression of functional markers. During PHH organoid outgrowth in the same culture condition as for FHs, the adult transcriptomes initially mimic the fetal transcriptomic signatures, but PHHs rapidly acquire disbalanced proliferation-lipid metabolism dynamics, resulting in steatosis and halted organoid growth. IL6 supplementation, as emerged from the fetal dataset, and simultaneous activation of the metabolic regulator FXR, prevents steatosis and promotes PHH proliferation, resulting in improved expansion of the derived organoids. Single-cell RNA sequencing analyses reveal preservation of their fetal and adult hepatocyte identities in the respective organoid cultures. Our findings uncover mitogen requirements and metabolic differences determining proliferation of hepatocytes changing from development to adulthood.


Asunto(s)
Proliferación Celular , Hepatocitos , Metabolismo de los Lípidos , Organoides , Transcriptoma , Humanos , Hepatocitos/metabolismo , Hepatocitos/citología , Organoides/metabolismo , Feto/metabolismo , Adulto , Interleucina-6/metabolismo , Interleucina-6/genética , Células Cultivadas
13.
Appl Immunohistochem Mol Morphol ; 32(5): 233-243, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38712586

RESUMEN

Chronic inflammation creates tumor microenvironment (TME) that facilitates colorectal cancer (CRC) cell proliferation, migration, metastasis, and tumor progression. Interleukin-6 (IL-6) is a proinflammatory cytokine with a pleiotropic effect on CRC development. We aimed to evaluate IL-6 expression in tumor cells and in immune cells in TME, to assess the serum level and IL6 -174 G/C genotype distribution and to correlate the results with selected morphologic and clinical parameters that may add useful information in understanding the mechanisms of human CRC progression. A total of 153 patients with CRC were recruited in the current study. We assessed the IL-6 serum concentration through the ELISA method, the expression of IL-6 in tumor and in immune cells by immunohistochemical and double immunofluorescence staining, the MSI status by immunоhistochemistry for 4 mismatch repair (MMR) proteins, and the genotype distributions for IL6 -174G/C (rs1800795) single-nucleotide polymorphism through PCR-RFLP method. Our results showed that serum IL-6 level were increased in CRC patients as compared with healthy controls (P<0.0001), and in patients with cancers with advanced histologic type (type IV). However, the higher concentration (above the median of 55.71 pg/mL) was with borderline association with longer survival of the patients after surgical therapy (P=0.055, Log rank test). We also found that IL-6+ immune cells prevailed in the invasive front (IF) of tumors compared with the tumor stroma (TS) (P<0.0001). More IL-6+ cells were recruited in the tumors with less advanced histologic type (I+II), with stronger inflammatory infiltrate in the IF, in early pTNM stages (I+II), without lymph node and distant metastases and the higher levels of IL-6+ cells, especially in the IF, were associated with longer survival (P=0.012). The results of our study suggest that although the serum levels of IL-6 are higher in CRC, the increased IL-6+ cells in tumor microenvironment, both in the invasive front and in tumor stroma, as well as the higher serum levels are associated with good prognostic variables and longer survival of the patients mainly in the early stages of CRC.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Colorrectales , Interleucina-6 , Microambiente Tumoral , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Interleucina-6/sangre , Femenino , Masculino , Persona de Mediana Edad , Biomarcadores de Tumor/metabolismo , Anciano , Microambiente Tumoral/inmunología , Pronóstico , Polimorfismo de Nucleótido Simple , Adulto
14.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 296-302, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38710513

RESUMEN

Objective To evaluate the effects of heme oxygenase-1 (HO-1) gene deletion on immune cell composition and inflammatory injury in lung tissues of mice with lipopolysaccharide (LPS)-induced acute lung injury (ALI). Methods C57BL/6 wild-type (WT) mice and HO-1 conditional-knockout (HO-1-/-) mice on the same background were randomly divided into four groups (n=5 in every group): WT control group, LPS-treated WT group, HO-1-/- control group and LPS-treated HO-1-/- group. LPS-treated WT and HO-1-/- groups were injected with LPS (15 mg/kg) through the tail vein to establish ALI model, while WT control group and HO-1-/- control group were injected with an equivalent volume of normal saline through the tail vein, respectively. Twelve hours later, the mice were sacrificed and lung tissues from each group were collected for analysis. Histopathological alterations of lung tissues were assessed by HE staining. The levels of mRNA expression of tumor necrosis factor α (TNF-α), interleukin 1ß (IL-1ß), and IL-6 were determined by PCR. The percentages of neutrophils (CD45+CD11b+Ly6G+Ly6C-), total monocytes (CD45+CD11b+Ly6Chi), pro-inflammatory monocyte subsets (CD45+CD11b+Ly6ChiCCR2hi) and total macrophages (CD45+CD11b+F4/80+), M1 macrophage (CD45+CD11b+F4/80+CD86+), M2 macrophage (CD45+CD11b+F4/80+CD206+), total T cells (CD45+CD3+), CD3+CD4+ T cells, CD3+CD8+ T cells and myeloid suppressor cells (MDSCs, CD45+CD11b+Gr1+) were detected by flow cytometry. Results Compared with the corresponding control groups, HE staining exhibited increased inflammation in the lung tissues of both LPS-treated WT and HO-1-/- model mice; mRNA expression levels of TNF-α, IL-1ß and IL-6 were up-regulated; the proportions of neutrophils, total monocytes, pro-inflammatory monocyte subsets, MDSCs and total macrophages increased significantly. The percentage of CD3+, CD3+CD4+ and CD3+CD8+ T cells decreased significantly. Under resting-state, compared with WT control mice, the proportion of neutrophils, monocytes and pro-inflammatory monocyte subset increased in lung tissues of HO-1-/- control mice, while the proportion of CD3+ and CD3+CD8+ T cells decreased. Compared with LPS-treated WT mice, the mRNA expression levels of TNF-α and IL-1ß were up-regulated in lung tissues of LPS-treated HO-1-/- mice; the proportion of total monocytes, pro-inflammatory monocyte subsets, M1 macrophages and M1/M2 ratio increased greatly; the percentage of CD3+CD8+ T cells decreased significantly. Conclusion The deletion of HO-1 affects the function of the lung immune system and aggravates the inflammatory injury after LPS stimulation in ALI mice.


Asunto(s)
Lesión Pulmonar Aguda , Hemo-Oxigenasa 1 , Lipopolisacáridos , Pulmón , Ratones Endogámicos C57BL , Ratones Noqueados , Animales , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/patología , Pulmón/patología , Pulmón/inmunología , Pulmón/metabolismo , Ratones , Lipopolisacáridos/efectos adversos , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Masculino , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Inflamación/genética , Inflamación/inducido químicamente , Inflamación/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo
15.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 319-326, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38710516

RESUMEN

Objective To investigate the impact of the cannabinoid receptor agonist arachidonyl-2'-chloroethylamide (ACEA) on cognitive function in mice with sepsis-associated encephalopathy (SAE). Methods C57BL/6 mice were randomly divided into artificial cerebrospinal fluid (ACSF) and lipopolysaccharide (LPS) groups. The SAE model was established by intraventricular injection of LPS. The severity of sepsis in mice was assessed by sepsis severity score (MSS) and body mass changes. Behavioral paradigms were used to evaluate motor ability (open field test) and cognitive function (contextual fear conditioning test, Y-maze test). To evaluate the effects of ACEA intervention on SAE, mice were randomly assigned to ACSF group, ACEA intervention combined with ACSF group, LPS group, and ACEA intervention combined with LPS group. The dosage of ACEA intervention was 1.5 mg/kg. Real-time quantitative PCR was used to measure the mRNA expression levels of interleukin 1ß (IL-1ß), IL-6, and tumor necrosis factor α (TNF-α) in mouse hippocampal tissues. Western blot analysis was used to assess the protein levels of IL-6 and TNF-α in the hippocampus. Nissl staining was performed to examine neuronal damage in the CA1 region of the mouse hippocampus. Behavioral paradigms were again employed to evaluate motor ability and cognitive function. Results Three days after intraventricular LPS injection, mice exhibited significant cognitive dysfunction, confirming SAE modeling. Compared to the control group, the LPS group showed significant increases in mRNA of inflammatory factors such as IL-6, TNF-α, and IL-1ß, together with significant increases in IL-6 and TNF-α protein levels in the hippocampus, a decrease in Nissl bodies in the CA1 region, and significant cognitive dysfunction. Compared to the LPS group, the ACEA intervention group showed a significant decrease in the mRNA of IL-6, TNF-α, and IL-1ß, a significant reduction in IL-6 and TNF-α protein levels, an increase in Nissl bodies, and improved cognitive function. Conclusion ACEA improves cognitive function in SAE mice by inhibiting the expression levels of inflammatory factors IL-6 and TNF-α.


Asunto(s)
Ácidos Araquidónicos , Ratones Endogámicos C57BL , Encefalopatía Asociada a la Sepsis , Animales , Encefalopatía Asociada a la Sepsis/tratamiento farmacológico , Encefalopatía Asociada a la Sepsis/metabolismo , Ratones , Masculino , Ácidos Araquidónicos/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Lipopolisacáridos/efectos adversos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/agonistas , Cognición/efectos de los fármacos , Sepsis/tratamiento farmacológico , Sepsis/complicaciones , Sepsis/metabolismo
16.
Biomed Environ Sci ; 37(4): 354-366, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38727158

RESUMEN

Objective: This study investigated the impact of occupational mercury (Hg) exposure on human gene transcription and expression, and its potential biological mechanisms. Methods: Differentially expressed genes related to Hg exposure were identified and validated using gene expression microarray analysis and extended validation. Hg-exposed cell models and PTEN low-expression models were established in vitro using 293T cells. PTEN gene expression was assessed using qRT-PCR, and Western blotting was used to measure PTEN, AKT, and PI3K protein levels. IL-6 expression was determined by ELISA. Results: Combined findings from gene expression microarray analysis, bioinformatics, and population expansion validation indicated significant downregulation of the PTEN gene in the high-concentration Hg exposure group. In the Hg-exposed cell model (25 and 10 µmol/L), a significant decrease in PTEN expression was observed, accompanied by a significant increase in PI3K, AKT, and IL-6 expression. Similarly, a low-expression cell model demonstrated that PTEN gene knockdown led to a significant decrease in PTEN protein expression and a substantial increase in PI3K, AKT, and IL-6 levels. Conclusion: This is the first study to report that Hg exposure downregulates the PTEN gene, activates the PI3K/AKT regulatory pathway, and increases the expression of inflammatory factors, ultimately resulting in kidney inflammation.


Asunto(s)
Regulación hacia Abajo , Inflamación , Mercurio , Fosfohidrolasa PTEN , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Inflamación/inducido químicamente , Inflamación/metabolismo , Mercurio/toxicidad , Transducción de Señal/efectos de los fármacos , Exposición Profesional/efectos adversos , Células HEK293 , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-6/sangre
17.
Cell Biochem Funct ; 42(4): e4027, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38715184

RESUMEN

Bioactive phytocompounds are crucial components in all plants. Since the time of traditional medicine, the utilization of plants has been grounded in the potential of these bioactive compounds to treat or manage specific illnesses. These natural bioactive compounds have sparked growing interest in employing medicinal plants for addressing various conditions, such as inflammatory diseases, diabetes, and cancer. This study focuses on assessing the qualitative phytochemical composition, antioxidant potential, and cytotoxic effects of blueberry (Vaccinium sect. Cyanococcus) extract using three different solvents, namely water, ethanol, and methanol. The extract exhibited notable antioxidant activities, as evidenced by DPPH and H2O2 free radical scavenging assays. The cell viability assay also demonstrated cell growth inhibition in A549 cells. Furthermore, nine specific phytocompounds sourced from existing literature were selected for molecular docking studies against CDK6 and, AMPK key protein kinases which enhance the cancer progression. The molecular docking results also revealed favorable binding scores, with a high score of -9.5 kcal/mol in CDK6 protein and a maximum score of AMPK with targets of -8.8 kcal/mol. The selected phytocompounds' pharmacodynamic properties such as ADMET also supported the study. Furthermore, rutin stated that pre-dominantly present in blueberry plants shows a potent cytotoxicity effect in A549 cells. Functional annotations by bioinformatic analysis for rutin also revealed the strong enrichment in the involvement of PI3K/AKT1/STAT, and p53 signaling pathways. Based on this analysis, the identified rutin and other compounds hold a promising anticancer activity. Overall, the comprehensive evaluation of both in vitro and in silico data suggests that the Vaccinium sect. Cyanococcus extract could serve as a valuable source of pharmaceutical agents and may prove effective in future therapeutic applications.


Asunto(s)
Arándanos Azules (Planta) , Proliferación Celular , Receptores ErbB , Estrés Oxidativo , Extractos Vegetales , Factor de Transcripción STAT3 , Transducción de Señal , Proteína p53 Supresora de Tumor , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Arándanos Azules (Planta)/química , Estrés Oxidativo/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Células A549 , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Receptores ErbB/metabolismo , Interleucina-6/metabolismo , Simulación del Acoplamiento Molecular , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Supervivencia Celular/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/metabolismo , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Ensayos de Selección de Medicamentos Antitumorales
18.
Wiad Lek ; 77(3): 393-401, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38691778

RESUMEN

OBJECTIVE: Aim: To investigate and analyze homeostatic disorders in patients with a combination of Chronic Pancreatitis(CP) and Arterial Hypertension (AH) and to develop correcting ways of the detected changes. PATIENTS AND METHODS: Materials and Methods: General clinical, laboratory-instrumental examination of 121 patients, who were undergoing inpatient treatment with a diagnosis of Chronic Pancreatitis in combination with Arterial Hypertension of the II stage during 2021-2022. RESULTS: Results: In the majority of cases of patients signs the increasing in IL-1,6 and Cortisol levels were found. A decrease in Ca to the lower limit of the norm was observed (2.18 ± 0.26 mmol/l to the data of control group patients (2.32 ± 0.12 mmol/l, p= 0.01 ), the levels of trace elements Zn and Se were determined within the reference values. The Atherogenic Index was increased 1.8 times and was significantly different from the control group date. During the FE-1 study, a decrease in the level of this indicator was revealed by 151.71±13.91 mg/g of feces, both to the values of reference values and a significant difference to the data of the control group (241.28±29.17 mg/g of feces, p<0 .05). CONCLUSION: Conclusions: Based on the multivariate linear regression analysis of the obtained data, formulas have been developed that can be used to predict the dynamics of the dependent variable (FE-1, IL-1, Selenium level, Glutathione Peroxidase, blood pressure) according to changes in the studied influencing factors.


Asunto(s)
Hipertensión , Pancreatitis Crónica , Humanos , Pancreatitis Crónica/complicaciones , Masculino , Femenino , Hipertensión/complicaciones , Persona de Mediana Edad , Análisis Multivariante , Adulto , Modelos Teóricos , Hidrocortisona/metabolismo , Interleucina-1/sangre , Interleucina-6/sangre , Interleucina-6/metabolismo
19.
Yakugaku Zasshi ; 144(5): 489-496, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38692922

RESUMEN

The tumor necrosis factor receptor (TNFR)-associated factor (TRAF) family of molecules are intracellular adaptors that regulate cellular signaling through members of the TNFR and Toll-like receptor superfamily. Mammals have seven TRAF molecules numbered sequentially from TRAF1 to TRAF7. Although TRAF5 was identified as a potential regulator of TNFR superfamily members, the in vivo function of TRAF5 has not yet been fully elucidated. We identified an unconventional role of TRAF5 in interleukin-6 (IL-6) receptor signaling involving CD4+ T cells. Moreover, TRAF5 binds to the signal-transducing glycoprotein 130 (gp130) receptor for IL-6 and inhibits the activity of the janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. In addition, Traf5-deficient CD4+ T cells exhibit significantly enhanced IL-6-driven differentiation of T helper 17 (Th17) cells, which exacerbates neuroinflammation in experimental autoimmune encephalomyelitis. Furthermore, TRAF5 demonstrates a similar activity to gp130 for IL-27, another cytokine of the IL-6 family. Additionally, Traf5-deficient CD4+ T cells display significantly increased IL-27-mediated differentiation of Th1 cells, which increases footpad swelling in delayed-type hypersensitivity response. Thus, TRAF5 functions as a negative regulator of gp130 in CD4+ T cells. This review aimed to explain how TRAF5 controls the differentiation of CD4+ T cells and discuss how the expression of TRAF5 in T cells and other cell types can influence the development and progression of autoimmune and inflammatory diseases.


Asunto(s)
Linfocitos T CD4-Positivos , Encefalomielitis Autoinmune Experimental , Transducción de Señal , Factor 5 Asociado a Receptor de TNF , Humanos , Animales , Factor 5 Asociado a Receptor de TNF/genética , Factor 5 Asociado a Receptor de TNF/metabolismo , Factor 5 Asociado a Receptor de TNF/fisiología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/etiología , Encefalomielitis Autoinmune Experimental/metabolismo , Receptor gp130 de Citocinas/fisiología , Receptor gp130 de Citocinas/metabolismo , Células Th17/inmunología , Interleucina-6/metabolismo , Interleucina-6/fisiología , Diferenciación Celular , Receptores de Interleucina-6/fisiología , Receptores de Interleucina-6/metabolismo , Quinasas Janus/metabolismo , Quinasas Janus/fisiología , Factores de Transcripción STAT/fisiología , Factores de Transcripción STAT/metabolismo , Ratones
20.
Biol Pharm Bull ; 47(5): 946-954, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38735732

RESUMEN

There is accumulating evidence that selective serotonin reuptake inhibitors (SSRIs), clinically used as antidepressants, have a beneficial effect on inflammatory diseases such as coronavirus disease 2019 (COVID-19). We previously compared the inhibitory effects of five U.S. Food and Drug Administration (FDA)-approved SSRIs on the production of an inflammatory cytokine, interleukin-6 (IL-6), and concluded that fluoxetine (FLX) showed the most potent anti-inflammatory activity. Here, we investigated the structure-activity relationship of FLX for anti-inflammatory activity towards J774.1 murine macrophages. FLX suppressed IL-6 production induced by the TLR3 agonist polyinosinic-polycytidylic acid (poly(I : C)) with an IC50 of 4.76 µM. A derivative of FLX containing chlorine instead of the methylamino group lacked activity, suggesting that the methylamino group is important for the anti-inflammatory activity. FLX derivatives bearing an N-propyl or N-(pyridin-3-yl)methyl group in place of the N-methyl group exhibited almost the same activity as FLX. Other derivatives showed weaker activity, and the N-phenyl and N-(4-trifluoromethyl)benzyl derivatives were inactive. The chlorine-containing derivative also lacked inhibitory activity against TLR9- or TLR4-mediated IL-6 production. These derivatives showed similar structure-activity relationships for TLR3- and TLR9-mediated inflammatory responses. However, the activities of all amino group-containing derivatives against the TLR4-mediated inflammatory response were equal to or higher than the activity of FLX. These results indicate that the substituent at the nitrogen atom in FLX strongly influences the anti-inflammatory effect.


Asunto(s)
Antiinflamatorios , Fluoxetina , Interleucina-6 , Relación Estructura-Actividad , Animales , Fluoxetina/farmacología , Ratones , Interleucina-6/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/química , Línea Celular , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Citocinas/metabolismo , Receptor Toll-Like 3/metabolismo , Poli I-C/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/química , Inflamación/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA